伪随机数是用确定性的算法计算出来自[0,1]均匀分布的随机数序列。并不真正的随机,但具有类似于随机数的统计特征,如均匀性、独立性等。在计算伪随机数时,若使用的初值(种子)不变,那么伪随机数的数序也不变。伪随机数可以用计算机大量生成,在模拟研究中为了提高模拟效率,一般采用伪随机数代替真正的随机数。模拟中使用的一般是循环周期极长并能通过随机数检验的伪随机数,以保证计算结果的随机性。
伪随机数的生成方法有几种?
(1) 直接法,根据分布函数的物理意义生成。缺点是仅适用于某些具有特殊分布的随机数,如二项式分布、泊松分布。
(2) 逆转法,假设U服从[0,1]区间上的均匀分布,令X=F-1(U),则X的累计分布函数(CDF)为F。该方法原理简单、编程方便、适用性广。
(3)接受拒绝法:假设希望生成的随机数的概率密度函数(PDF)为f,则首先找到一个PDF为g的随机数发生器与常数c,使得f(x)≤cg(x),然后根据接收拒绝算法求解。由于算法平均运算c次才能得到一个希望生成的随机数,因此c的取值必须尽可能小。显然,该算法的缺点是较难确定g与c。因此,伪随机数生成器(PRNG)一般采用逆转法,其基础是均匀分布,均匀分布PRNG的优劣决定了整个随机数体系的优劣[7]。下文研究均匀分布的PRNG。
生成器的缺点有哪些?
重复做N=10000次试验,每次产生S=20与S=100个随机分布的样本,同时采用Kolmogorov- Smirnov假设检验(hypothesis test)来确定样本是否满足均匀分布。规定:
① 0假设(null hypothesis)为样本服从均匀分布;② 1假设(alternative hypothesis)为样本不服从均匀分布。采用P值(∈[0, 1])衡量,P值越趋近于0,表示越有理由拒绝0假设,即样本不服从均匀分布;P值越趋近于1,表示越有理由接受0假设,即样本服从均匀分布。
随着P值下降,样本也越来越不服从均匀分布。实践中希望P值越大越好。然而统计学的结论显示,P值一定服从均匀分布,与N、S大小无关,这表明由于随机性,总会出现某次抽样得到的样本不服从、甚至远离均匀分布。另外,样本大小的不同,造成检验标准的不同,直观上看S=100对应的均匀分布普遍比S=20对应的更均匀。因此,小样本情况下均匀分布PRNG的差异性尤为严重。
内容搜集整理于网络,不代表本站同意文章中的说法或者描述。文中陈述文字和内容未经本站证实,其全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或者承诺,并且本站对内容资料不承担任何法律责任,请读者自行甄别。如因文章内容、版权和其他问题侵犯了您的合法权益请联系邮箱:5 146 761 13 @qq.com 进行删除处理,谢谢合作!