苏北网
当前位置:首页>国内 >

设A是V的线性变换性质是?关于线性变换和特征值的理解是?

时间 2023-05-17 15:59:42 来源:创视网  

设A是V的线性变换性质是

(1)设A是V的线性变换,则A(0)=0,A(-α)=-A(α);[2]

(2)线性变换保持线性组合与线性关系式不变;

(3)线性变换把线性相关的向量组变成线性相关的向量组。

注意:线性变换可能把线性无关的向量组变成线性相关的向量组。

关于线性变换和特征值的理解[3]

首先我们来看这样一个事实。一个二维的直角坐标系XOY,然后逆时针方向旋转了ө角变为X’OY’后,考察会发现XOY和 X’OY’的坐标系之间存在这样的转化关系。就是说在XOY坐标系下的某一个点在X’OY’坐标系下的坐标变了 。那么我们同样来考察一下这两个坐标系下的基坐标。就是来考察在XOY坐标系下的基坐标 (1,0)和(0,1)在新的坐标系X’OY’下的 基坐标下的投影大小用(1,0)和(0,1)来表示为这样的。注意,这里的矩阵的排列是前面两个基坐标系数方程的转置矩阵,之所以写为转置矩阵是因为我们习惯这样来写基坐标的线性变换A =( , ) 。我们可以看到这样的旋转变换的目的就是把坐标系旋转后来看一下。这样的旋转角度一旦确定以后,我们就能够得到原来的老坐标下的坐标点在新坐标系下的坐标为 。注意的是,这里的坐标是右乘变换矩阵。

线性变换数学定义在一般的高等代数学书中都可以找到。A(a+b)=Aa+Ab,Aka=kAa。其中a,b是V中的线性空间。这个定义就是说把空间中的元素(特殊地想为三维空间的向量)经过一个变换,而这种变换是具有线性的特性的。那么这种变换的从一个元素转变到另外一个元素的对应关系,我们可以用前面的一个矩阵来表示,称为线性变换矩阵。

标签: 设A是V的 线性变换 性质都是 关于线

相关阅读RELEVANT

  • 版权及免责声明:

内容搜集整理于网络,不代表本站同意文章中的说法或者描述。文中陈述文字和内容未经本站证实,其全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或者承诺,并且本站对内容资料不承担任何法律责任,请读者自行甄别。如因文章内容、版权和其他问题侵犯了您的合法权益请联系邮箱:5 146 761 13 @qq.com 进行删除处理,谢谢合作!